

Markscheme

November 2015

Physics

Standard level

Paper 3

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Physics SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer questions from **TWO** of the Options $[2 \times 20 \text{ marks}]$. Maximum total = [40 marks]

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- **4.** Words in brackets () in the markscheme are not necessary to gain the mark.
- **5.** Words that are <u>underlined</u> are essential for the mark.
- **6.** The order of marking points does not have to be as in the markscheme, unless stated otherwise.

[2]

Option A — Sight and wave phenomena

(b)

- (a) scotopic vision uses rods (not cones);
 the spectral response of all rods peaks at the same wavelength;
 so rods can only signal presence or absence of light;
 three types of cones respond to different peak wavelengths (allowing colour vision);
 The second and fourth marking points may be shown on a spectral response
 - graph.

 cones found in fovea/centre allowing clear colour vision;
- 2. (a) (i) third harmonic means 1.5 loops; (accept in form of a diagram) $\frac{2}{3} \times \ 0.27 \ (= 0.18) \ ;$ [1 max]

rods over rest of retina allow better night sight/motion/peripheral vision;

- (ii) length is $\frac{3}{4}$ of a wavelength so $\lambda = 0.36\,\mathrm{m}$; $f = 940\,\mathrm{Hz}$; [2]
- (b) $f' = 940 \left(\frac{340}{340 + 22} \right);$ 880 Hz;
- (a) large central peak and at least one subsidiary maximum on each side;
 minima have intensity of zero and intensity of secondary maxima at most 25 % of central maximum;
 - (b) explanation of resolving seeing images as being from separate objects;
 idea of diffraction patterns overlapping;
 central maximum being at least as far from companion as the first minimum;
 - (c) equating $1.22\frac{\lambda}{b}$ to $\frac{x}{D}$; 0.43 (m);
- use polarizing filter/Polaroid and place over display and rotate;
 when display becomes totally dark the Polaroids are crossed;
 the planes of polarization are at right angles so the display must emit plane polarized light;
 [3]

Option B — Quantum physics and nuclear physics

5. (a) light made of photons of energy E = hf; electrons are released immediately from the metal; if electron gains sufficient energy (from a photon);

[2 max]

(b) different electrons may be bound by a different amount of energy to the metal;

[1]

(c) insufficient photon energy to eject surface electrons; greater intensity means more photons but still none with enough energy;

[2]

(d) $E_{\text{max}} = (1.75 \times 1.60 \times 10^{-19}) 2.80 \times 10^{-19} \text{ J};$

$$\phi = \left(hf - E_{\text{max}} = 6.63 \times 10^{-34} \times \frac{3.00 \times 10^8}{620 \times 10^{-9}} - 2.80 \times 10^{-19} = \right) 4.1 \times 10^{-20} \,\text{J};$$

- **6.** (a) (i) only the three correct arrows on diagram; [1] (-1.51 to -3.40, -1.15 to -13.6 and -3.40 to -13.6)
 - (ii) 1.89 eV; [1]
 - (b) (i) photon is absorbed; electron (in a hydrogen atom) raised to higher/–3.40 eV/excited state; [2]
 - (ii) no absorption / photon pass through; [1]
- 7. (a) X: 26 and Y: 12; (both needed for [1])

 Z: v/neutrino;

 Do not allow the antineutrino.

 [2]
 - (b) total energy released is fixed;
 neutrino carries some of this energy;
 (leaving the beta particle with a range of energies)

 [2]
 - (c) (i) the time taken for half the radioactive nuclides to decay / the time taken for the activity to decrease to half its initial value;

 Do not allow reference to change in weight.

 [1]
 - (ii) $\lambda = \left(\frac{\ln 2}{7.2 \times 10^5}\right) 9.63 \times 10^{-7};$ $11.2 = 36.8e^{-\left(9.63 \times 10^{-7}\right)t};$ $t = 1.24 \times 10^6 \text{ yr};$ [3]

Option C — Digital technology

- (a) ability to make more copies easily / faster retrieval / text can be manipulated / more can be stored in the same volume;
 Allow any other sensible suggestion.
 - (b) estimation 3000 characters per page; (allow a range between 2000 and 4000) number of bits per page = 3000 × 16 (= 48 000);

number of pages =
$$\frac{700 \times 10^6 \times 8}{3000 \times 16} = (1.17 \times 10^5);$$
 [3]

Allow sensible answers based on estimation of characters per page.

- **9.** (a) the ratio of charge to potential difference / $C = \frac{Q}{V}$ with pronumerals explained; [1]
 - (b) energy received by pixel = $1.6 \times 10^{-3} \times 2.1 \times 10^{-12} \times 0.15$ (= 5.04×10^{-16} J); number of photons incident on the pixel = $\frac{5.04 \times 10^{-16}}{4.8 \times 10^{-19}}$ (= 1050); number of electrons ejected = 0.6×1050 (= 630);

$$V = \frac{Q}{C} = \frac{630 \times 1.6 \times 10^{-19}}{170 \times 10^{-12}} \text{ or } 5.9 \times 10^{-7} \text{ V};$$

(c) digital output 1100; [1]

[2]

general shape of graph correct; straight line between –2.5 V and 2.5 V; plateau at –15 V and +15 V beyond this;

[3]

[3]

(b) switch over happens when non-inverting input $\geq 5 \text{ V}$;

current through the
$$20 \,\mathrm{k}\Omega = \left(\frac{5 - (-15)}{20 \times 10^3} = \frac{20}{20 \times 10^3} = \right) \,\mathrm{1\,mA}$$
;
 $V_{\mathrm{IN}} = (5 + [1\,\mathrm{mA} \times 4\,\mathrm{k}\Omega] = 5 + 4 =) \,9\,\mathrm{V}$;

11. damage caused by mining for precious metals; high rate of disposal/landfill; masts detract from beauty in some areas;

[2 max]

Option D — Relativity and particle physics

12. (a) a coordinate system; that is not accelerating / where Newton's first law applies;

[2]

[2]

(b) (i)
$$\gamma = \left[\frac{1}{\sqrt{1 - 0.8^2}} = \right] 1.67;$$

$$\Delta t_0 = \left[\frac{3}{1.67} = \right] 1.8 \text{ s};$$

[1]

- (ii) 1.6*c*;
- (iii) (one of the) postulates states that the speed of light in a vacuum is the same for all inertial observers;Galilean transformation will give a relative speed greater than the speed

[2]

(iv)
$$\gamma = \frac{1}{\sqrt{1 - 0.976^2}} (= 4.59);$$

 $l_0 = (4.56 \times 8.00 =) 36.7 \text{ m};$

[2]

(c)
$$t = \frac{s}{v} = \frac{11.4}{0.8} = 14.25 \text{ years};$$

 $\Delta t_0 = \frac{\Delta t}{v} = \frac{14.25}{1.67} = 8.6 \text{ years};$

[2]

Accept length contraction with the same result.

13. (a) $+\frac{2}{3}-\frac{1}{3}-\frac{1}{3}=0$ for charge;

any particle containing a strange quark has strangeness of −1;

[2]

(b) (i) strangeness:

the p has a strangeness of 0;

the K^- particle has a strangeness of -1;

baryon number.

lambda and protons are baryons each having a baryon number of +1;

the K^- meson has a baryon number of 0;

[4]

(ii) only during the weak interaction strangeness is not conserved (therefore it is a weak interaction);

[1]

(iii)
$$m = \left[80.4 \,\text{GeV} \,\text{c}^{-2} = \frac{80.4 \times 10^9}{931.5 \times 10^6} \times 1.661 \times 10^{-27} = \right] 1.43 \times 10^{-25} \,\text{kg};$$

$$R \approx \left(\frac{6.63 \times 10^{-34}}{4\pi \times 1.43 \times 10^{-25} \times 3 \times 10^8} = \right) 1.23 \times 10^{-18} \,\text{m};$$
[2]

Option E — Astrophysics

14. (a) the star is (much) closer than the other star (and close enough to Earth) / parallax effect has been observed;

[1]

(b) (i)

[1]

Award **[1]** if all three (d, D, θ) are shown correctly. Accept D as a line from Earth to the star.

(ii)
$$\sin \frac{\theta}{2} = \frac{d}{2D} \text{ or } \tan \frac{\theta}{2} = \frac{d}{2D} \text{ or } \theta = \frac{d}{D};$$

consistent explanation, eg: small angle of approximation yields $\theta = \frac{d}{D}$;

F41

[2]

(iii) any angular unit quoted for θ and any linear unit quoted for D;

[1]

(c) (yes) star is close enough (in local galaxy) to determine spectral characteristics;

[1]

- 15. (a) HR diagram refers to real stars / absolute magnitude depends on (inherent) properties of the star / absolute magnitude is a measure of brightness at a distance of 10 pc; any relevant info about apparent magnitude, eg: apparent magnitude depends on distance;
- [2]
- (b) to cover a wide range of orders of magnitude; smaller values would be lost on a linear scale / the logarithmic scale allows more stars to be shown on the diagram (making the diagram more relevant);
- [2]

[3]

- (c) $\frac{L_{V}}{L_{S}} = \left(\frac{\sigma A_{V} [T_{V}]^{4}}{\sigma A_{S} [T_{S}]^{4}} = \right) \frac{\sigma [r_{V}]^{2} [T_{V}]^{4}}{\sigma [r_{S}]^{2} [T_{S}]^{4}};$ $\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}} = \frac{[r_{V}]^{2}}{[r_{S}]^{2}} \times \frac{9600^{4}}{5800^{4}};$ $r_{V} = \left(\sqrt{\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}}} \times \frac{5800^{4}}{9600^{4}} r_{S} = \right) 2.3 r_{S};$
 - (d) obtain the spectrum of the star;
 measure the position of the wavelength corresponding to maximum intensity;
 use Wien's law (to determine temperature);

 (allow quotation of Wien's equation
 if symbols defined)

 Award [3 max] for referring to identification of temperature via different ionizations
 of different elements.
- **16.** (a) $T = \frac{2.90 \times 10^{-3}}{\lambda_{\text{max}}} = \frac{2.90 \times 10^{-3}}{1.06 \times 10^{-3}};$ = 2.7 K;
 - (b) current low temperature observed is a result of expansion; (expansion) has caused cooling from high temperatures; [2]

[2]

Option F — Communications

17. (a) the modification/change of a carrier wave by addition of a signal wave/information; [1]

(b) (i) (voice signal only requires) low quality;
AM has lower band width requirement than FM;
simpler (more reliable) circuits;
range greater than FM / can bounce off the ionosphere;
[2 max]

central band drawn at correct position; shorter side bands at correct positions;

(iii) $\left(\frac{0.4 \times 10^6}{80 \times 10^3} = \right) 5;$

(c) geostationary: [2 max]

Allow one advantage plus argument:

always above the same point of the Earth / no tracking dish required / allows for continuous communication / outside Earth's atmosphere so last longer in orbit / can be positioned permanently in sunlight for its power supply; evidence of the mentioned / any relevant argument;

or

Allow any two advantages:

always above the same point of the Earth;

no tracking dish required;

allows for continuous communication;

outside Earth's atmosphere so last longer in orbit;

can be positioned permanently in sunlight for its power supply;

polar-orbiting: [2 max]

Allow one advantage plus argument:

lower orbit / less power required at both ground station and satellite / cheaper to put into orbit / coverage of whole planet over a number of orbits; evidence of the mentioned / any relevant argument;

or

Allow any two advantages:

lower orbit;

less power required at both ground station and satellite;

cheaper to put into orbit;

coverage of whole planet over a number of orbits;

[4 max]

- (a) (i) (a digital) signal is split up for transmission and recombined at the end of the process / the signal is transmitted in pulses;other signals can be transmitted in the spaces between the pulses;[2]
 - (ii) the bit rate is higher / more data sent per unit time; faster transmission of data; making use of empty space between samples; [1 max]
 - (b) time between samples = $\frac{1}{4000}$ = 250 μ s; duration of sample = 8 bit ×8 μ s = 64 μ s; number of samples transmitted = $\frac{250}{64}$ = 3.9 signals; so three signals maximum;

(c) attenuation = $0.08 \times 30.0 = 2.4 \, dB$;

$$2.4 = 10 \log \left(\frac{I_1}{2 \text{ mW}}\right);$$

$$I_1 = 3.5 \text{ mW};$$

[3]

[4]

Option G — Electromagnetic waves

19. (a) sky is blue due to scattering of light from Sun (by particles, nitrogen molecules); blue scatters better / as the atmosphere (becomes) less dense less scattering occurs;

(finally) the sun's light is not scattered and "the sky" is black (meaning no light between point light sources);

[3]

(b) natural frequency of carbon dioxide = $\left(\frac{1}{5 \times 10^{-14}}\right) = 2 \times 10^{13} \text{ Hz}$;

infrared from the Sun is well outside this value so transmitted; infrared from the Earth is close to this value so absorbed/scattered/trapped;

[3]

20. (a) (i)

any correct ray out of the three shown above; second ray correct; image correctly located and labelled;

[3]

(ii) the image is virtual; no light rays pass through this point;

[2]

(b) $\frac{1}{u} = \frac{1}{f} - \frac{1}{v};$ $u = \frac{20}{3};$

 $m = \left(-\frac{v}{u} = -\frac{60}{20} = \right)(-)3$;

[3]

21. (a) single slit before the double slit / use a laser light / single source;

[1]

(b) destructive interference; path lengths from slits differ by half a wavelength; waves arrive antiphase / 180° out of phase / π out of phase;

[2 max]

(c) (i)
$$\theta_{\text{blue}} = \left(\frac{\theta_{\text{red}}\lambda_{\text{blue}}}{\lambda_{\text{red}}} = \frac{0.0045 \times 440 \,\text{nm}}{660 \,\text{nm}} = \right) 0.0030 \,\text{rad};$$

 $\Delta\theta_{\text{blue}} = (0.0045 - 0.0030 =) 0.0015 \,\text{rad};$

[2]

(ii) marking direction of shift on the diagram;

[1]

